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Abstract Aging is a biological process character-

ized by a progressive functional decline in tissues and

organs, which eventually leads to mortality. Telom-

eres, the repetitive DNA repeat sequences at the end of

linear eukaryotic chromosomes protecting chromo-

some ends from degradation and illegitimate recom-

bination, play a crucial role in cell fate and aging. Due

to the mechanism of replication, telomeres shorten as

cells proliferate, which consequently contributes to

cellular senescence and mitochondrial dysfunction.

Cells are the basic unit of organismal structure and

function, and mitochondria are the powerhouse and

metabolic center of cells. Therefore, cellular senes-

cence and mitochondrial dysfunction would result in

tissue or organ degeneration and dysfunction followed

by somatic aging through multiple pathways. In this

review, we summarized the main mechanisms of

cellular senescence, mitochondrial malfunction and

aging triggered by telomere attrition. Understanding

the molecular mechanisms involved in the aging

process may elicit new strategies for improving health

and extending lifespan.
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Introduction

Mammalian telomeres consist of long tracts of

TTAGGG repeats that range from 5 kb in human

cells to 100 kb in mice and associated protein complex

termed shelterin (de Lange 2005a; McElligott and

Wellinger 1997). The main function of telomeres is to

protect chromosome ends from being recognized as

double-strand DNA damage through recruitment of

shelterin, alteration of their structure and compaction

of telomere chromatin. These protection mechanisms

are based on the maintenance of telomere length.

However, telomeres progressively shorten with cell

division due to the ‘‘end-replication problem’’ and

telomere end processing (Olovnikov 1973; Watson

1972; Wu et al. 2012). When a critical telomere length

is reached, shelterin will lose its binding site and

telomeric DNA cannot form a protective secondary

structure. Aging is characterized by a progressive

time-dependent functional decline. Although its
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biological causes remain largely unknown, recent

studies have identified several hallmarks of aging,

which have been divided into three categories includ-

ing primary causes of aging-associated damage,

antagonistic responses to the damage and the integra-

tive hallmarks that are the consequences of the

response. Although cellular senescence and mitochon-

drial malfunction are also hallmarks of aging, telom-

ere attrition has been considered as the primary

hallmark (Lopez-Otin et al. 2013; McHugh and Gil

2018). Cellular senescence has been defined as

proliferative arrest which decreases the number of

cells on the basis of the organism. Furthermore, when

senescence occurs in the stem cells, the potential of

tissue regeneration will decrease, which contributes to

aging. Cellular senescence is initiated by different

stimuli, such as telomere dysfunction, oxidative, and

oncogenic stress. Distinct triggers induce different

modes of cell senescence, mainly including replicative

senescence and stress-induced premature senescence

(SIPS) (Hernandez-Segura et al. 2018). In this article,

we primarily center on cell senescence activated by

telomere shortening, known as replicative senescence.

Mitochondrial dysfunction can influence the metabo-

lism and activity of cells due to the inefficiency of the

respiratory chain. Both of two aging hallmarks,

cellular senescence and mitochondrial dysfunction,

can be mediated by telomeres shortening (Sahin et al.

2011). Telomere shortening has been connected with

aging for many decades, but the molecular mechanism

is not particularly clear. In this review, we begin by

describing the important role of telomeres in chromo-

some end protection. Then, we focus on the pathways

by which telomeres attrition contributes to aging.

Although there are several new articles similar to the

topic of this review, our article focuses more on the

aging pathways initiated by telomere shortening

(Birch et al. 2018; de Magalhaes and Passos 2018;

Zole and Ranka 2018). In this article, we summarized

two main molecular mechanistic pathways, the telom-

ere-cellular senescence-aging axis and telomere-mi-

tochondria dysfunction-aging axis. Finally, we

provide possible anti-aging approaches based on the

mechanisms by which telomere attrition promotes

aging.

Structure and function of telomere

The natural ends of linear chromosomes are toxic to

mammalian cells in that they can be recognized as

DNA double-strand breaks, resulting in deleterious

chromosomal rearrangement and genomic instability

(Lazzerini-Denchi and Sfeir 2016; Xu et al. 2013).

This problem was first proposed by Barbara McClin-

tock and Herman Muller, who speculated that spe-

cialized structures named telomeres may protect

chromosome ends from aberrant DNA repair (McClin-

tock 1941). Telomeres are dynamic chromosome-end

complexes, composed of tandem repetitive DNA

sequences and associated protective proteins (Black-

burn et al. 2015; Muller 1938). Interactions between

telomeric DNA and shelterin complexes safeguard

chromosome ends from the DNA damage response

(DDR) and maintain genome stability (de Lange

2005b).

Telomere DNA

In mammals, telomeric DNA is composed of tandem

TTAGGG repeats, which end in single-stranded

G-rich 30 overhangs, known as G-overhangs (Makarov

et al. 1997; Moyzis et al. 1988). The G-overhang can

invade the double-stranded telomeric DNA forming a

lariat-like structure called the t-loop, which has been

observed in functional telomeres by electron micro-

scopy and stochastic optical reconstruction micro-

scopy (Doksani et al. 2013; Griffith et al. 1999). By

generating t-loops, telomeres can fold into a closed

configuration that protects the chromosome ends from

being identified as DNA double-strand breaks by the

DNA damage repair machinery (de Lange 2009;

Morgan et al. 2018).

Telomeric DNA also has a propensity to fold into

nocanonical secondary structures, called G-quadru-

plexes (G4) (Schaffitzel et al. 2001). Studies have

reported that G4 structures at the telomeric overhang

play an important role in capping telomeres to

preserve chromosomal integrity and suppressing the

DNA damage signals in telomeres (Ray et al. 2014;

Smith et al. 2011). Furthermore, the telomeric G4

structure has been shown to restrain telomere exten-

sion by influencing telomerase activity (Oganesian

et al. 2006; Zahler et al. 1991). Telomerase is a

ribonucleoprotein (RNP) complex, the catalytic core

of which comprises telomerase reverse transcriptase
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(TERT) and a telomerase RNA (TR). To extend

telomeres, telomerase binds to the 30 end of the DNA

and uses its internal RNA as a template for a TERT-

catalyzed reverse transcription reaction (Greider and

Blackburn 1989; Jiang et al. 2018; Wu et al. 2017).

Computational analysis has revealed that the G4

structures are highly distributed in key regulatory

regions of the human genome, such as promoters,

transcription start sites and telomeres (Bedrat et al.

2016; Chambers et al. 2015; Huppert and Balasubra-

manian 2005). G4 has been proposed to have regula-

tory roles in DNA replication, transcription and

translation (Hansel-Hertsch et al. 2017; Rhodes and

Lipps 2015).

Recent studies have revealed that telomeric DNA is

transcribed by RNA polymerase II into long noncod-

ing telomeric repeat-containing RNA (TERRA) from

subtelomeric regions to the telomeric repeat sequences

(Azzalin et al. 2007; Schoeftner and Blasco 2008).

TERRA has been identified as an integral component

of telomeric heterochromatin, which is considered a

molecular scaffold for various protein enzymes sup-

porting several important functions at chromosome

ends (Azzalin and Lingner 2015). In previous studies,

decreasing TERRA by different means results in a

dramatic loss of telomere sequences and DDR,

indicating that TERRA plays an essential role in

maintaining telomeric integrity (Chu et al. 2017;

Montero et al. 2016). Research has shown that

TERRA can bind TERT and base pairs with telom-

erase RNA template, inhibiting telomerase activity

(Redon et al. 2010). Furthermore, whether TERRA

increases or decreases, telomerase shows the opposite

relationship in studies (Chu et al. 2017; Law et al.

2010; Webb and Zakian 2016). However, recent

evidence has suggested that TERRA is involved in

telomerase recruitment to telomeres promoting telom-

erase-mediated telomere elongation, which is contra-

dictory to the conclusions other studies have made

(Moravec et al. 2016). Thus, further studies should be

conducted to explore the correlation between TERRA

and telomerase. It is well known that in telomerase-

negative cells, critically short telomeres can be

repaired by homology-directed repair (HDR) to pre-

vent early onset senescence (Abdallah et al. 2009;

Fallet et al. 2014). Recent studies have proposed that

TERRA can form R loops, and the elevated R-loops

were correlated with an increase in telomere recom-

bination events (Kar et al. 2016; Rippe and Luke 2015;

Sagie et al. 2017). Therefore, it is speculated that

TERRA R-loops at critically short telomeres can

activate the DDR to promote HDR to prevent senes-

cence (Graf et al. 2017; Yu et al. 2014). Finally,

serving as a scaffold, TERRA interacts with telomere

repeat factors and heterochromatin protein playing an

important role in telomere structural maintenance and

heterochromatin formation (Deng et al. 2009).

Shelterin

Telomeric DNA can also recruit shelterin to protect

chromosome ends. Shelterin binds specifically to

telomeric DNA, which is composed of six proteins:

telomeric repeat binding factor 1 (TRF1), TRF2,

repressor/activator protein (RAP1), protection of

telomeres protein (POT1), TRF1-interacting nuclear

protein 2 (TIN2) and TIN2- and POT1-interacting

protein (TPP1) (de Lange 2005a; Lazzerini-Denchi

and Sfeir 2016). In this review, we divide the function

of shelterin into three categories. First, shelterin is

thought to protect telomeres via affecting the structure

of telomeric DNA. It is proposed that TRF2 represses

the ataxia telangiectasia-mutated (ATM)-dependent

DNA damage signaling pathway and classical nonho-

mologous end joining (NHEJ) by folding telomeric

DNA into a t-loop (Benarroch-Popivker et al. 2016;

Doksani et al. 2013). In addition, recent evidence has

revealed that TRF2 and RAP1 are required to repress

t-loop cleavage through preventing the activation of

poly(ADP-ribose) polymerase 1 (PARP1, one of the

DDR factors) to protect telomeres from homologous

recombination-mediated repair in mammals (Rai et al.

2016). TRF2 also mediates t-loop unwinding to allow

telomerase access to the chromosome end and avoid

replication fork collisions in S-phase (Sarek et al.

2016). However, uncontrolled TRF2 stimulates the

invasion of TERRA into telomeric double-strand

DNA, resulting in the formation of telomeric RNA–

DNA hybrids (telR loops), and TRF1 can directly

support end protection by restraining telR loops (Lee

et al. 2018). G4 structures are considered telomeric

replication barriers, and TRF1 may remove these

barriers by recruiting helicases, facilitating telomeric

replication (Sfeir et al. 2009). Second, shelterin

complexes can directly prevent telomeres from

DDR. Studies have found that telomeres are likely

threatened by the ataxia-telangiectasia mutated and

Rad3-related protein (ATR)-dependent DDR, even
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they are in the t-loop configuration, and POT1–TPP1

is required to block the activation of the ATR kinase

(Kibe et al. 2016). POT1 also contributes to telomere

protection by preventing replication protein A (RPA),

which is a crucial factor for the activation of ATR

binding at telomeres (Zou and Elledge 2003). As the

central hub of the shelterin complex, TIN2 plays an

important role in repressing ATR and ATM signaling

by linking the POT1–TPP1 heterodimer and stabiliz-

ing TRF2 at the telomeres (Frescas and de Lange

2014; Hu et al. 2017; Takai et al. 2011). Finally,

shelterin is also crucial for the maintenance of

telomeric DNA through modulating telomerase activ-

ity. Binding tightly to 30 overhangs, POT1 serves as a

negative regulator of telomerase, and a current model

proposed that POT1 and TPP1 compete with telom-

erase for access to the 30 telomere terminus (Kelleher

et al. 2005; Lei et al. 2005; Loayza 2003). TIN-

tethered TPP1 recruits both POT1 and telomerase to

telomeres (Abreu et al. 2010; Nandakumar et al. 2012;

Xin 2007). TIN2 is required for the recruitment of

TPP1/POT1, and telomerase decreases with knock-

down of TIN2. Recent studies have suggested that

TIN2 mutation decreases the frequency of telomere

extension by telomerase, suggestive of a TPP1-inde-

pendent role of TIN2 in telomere regulation (Frank

et al. 2015; Nandakumar et al. 2012; Takai et al. 2017).

Studies have suggested that POT1–TPP1 enhances

telomerase processivity. The questions remain how

POT1, a negative regulator of telomerase, interacts

with TPP1 to promote telomerase processivity (La-

trick and Cech 2010; Wang et al. 2007) (Fig. 1).

Telomere chromatin compaction

In the above description, we summarized how telom-

ere components: shelterin subunits and telomeric

DNA protect telomere and maintain its integrity.

Several observations have shown that robust protec-

tion mechanisms must exist at chromosome ends. A

recent study indicates that telomeres are condensed

into tight globular structures in vivo between shelterin

subunits and telomeric DNA, and the compaction of

telomeric chromatin plays a major role in protecting

telomeres against DDR signaling through inhibiting

the DDR signal at telomeric sites (Bandaria et al.

2016). In summary, the most important function of

telomere is to ensure chromosome stability. The

realization of this function depends on not only

telomere-associated proteins, but also the secondary

protective structures of telomere DNA formation and

the compaction of telomeric chromatin. Only when all

parts function properly, can telomeres maintain their

integrity.

Telomere-cellular senescence-aging axis

Telomere attrition

DNA is duplicated through semiconservative replica-

tion in that each strand of the original parental

doubled-stranded DNA serves as a template for the

reproduction of the complementary strand, and DNA

replication can proceed in only one direction, from the

50 end to 30 end. For the leading strand, DNA is copied

continuously in the direction of the advancing repli-

cation fork. For the lagging strand, which is assembled

via the joining of Okazaki fragments, DNA replication

proceeds discontinuously. Okazaki fragment synthesis

requires an RNA primer, which is synthesized by RNA

polymerase, because DNA polymerase can only

continue (but not begin) a strand. After Okazaki

fragments are synthesized, DNA polymerase I

removes the RNA primers and then fills in the internal

gaps with DNA. Okazaki fragments are subsequently

connected by ligase. However, without primer, a short

gap will be left on the lagging strand at the end of

chromosome after removal of the RNA primer. Thus,

the telomere gets shorter after multiple rounds of DNA

replication. This is the ‘‘end-replication problem’’

proposed by Watson in 1972 (Olovnikov 1973; Sugino

et al. 1972; Watson 1972). However, this incomplete

replication is not the only reason why telomeres

shorten. After replication, the formation of the G

overhang occurs at leading-end telomeres through 50

end resection, which could make a significant contri-

bution to telomere attrition (Wu et al. 2012). Except

the end replication problem and telomere 50 end

resection, telomere attrition rates are correlated with

many other factors, such as reactive oxygen species

(ROS), which could accelerate telomere shortening

(Herbert et al. 2008). Although telomeres protect

mammalian chromosome ends from being recognized

as broken ends through altered structure and shelterin

complexes, this framework cannot be maintained as

telomeres shorten. As telomeres shorten, they gradu-

ally lose the ability to recruit sufficient shelterin
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components that facilitate the formation of protective

telomere secondary structures such as t-loops which

repress the ATM and ATR pathways (Erdel et al.

2017; Gaullier et al. 2016; Smogorzewska et al. 2000).

Telomere attrition and cellular senescence

The first scientist to connect the Hayflick limit with

telomere replication was Olovnikov. He proposed that

telomere length could determine the possible number

of cell division rounds (Olovnikov 1973). In 1986,

telomeres were directly linked to cell aging by Cooke

and Smith when they compared telomere length in

different tissues (Cooke and Smith 1986). Over the

next few years, researchers found that the replicative

capacity of human cells increases because telomerase

extends the telomeres. These experiments confirmed

that progressive telomeres shortening is indeed the

main factor resulting in senescence (Allsopp et al.

1992; Harley et al. 1992). Thus, telomeres are

regarded as the ‘‘molecular clock’’ of cells (Muezzin-

ler et al. 2013). Telomeres lose their protective

structure and proteins as they gradually shorten and

then trigger replicative senescence through DDR

pathways (Morgan et al. 2018).

Cellular senescence is defined as a stable cell cycle

arrest, which is established and maintained by at least

two major pathways: the p53-p21 and p16-Rb path-

ways (Childs et al. 2015; He and Sharpless 2017;

Munoz-Espin and Serrano 2014). Here, we focus on

the replicative senescence caused by telomere shrink-

ing. Without expression of telomerase in somatic cells,

telomeres shorten with every round of replication, and

short telomeres will be detected as double-strand DNA

breaks when critical telomere shortening is reached

(Arnoult and Karlseder 2015; d’Adda di Fagagna

2008). DNA double-strand breaks induce DDR, a

signaling cascade converging on the ATM kinase that

activates p53 (Lossaint et al. 2011; Roake and Artandi

2017; Wang et al. 2011). P53 is a canonical tumor

Fig. 1 Telomere structure and function. Telomeres are com-

posed of repetitive sequence TTAGGG and associated protec-

tive proteins, shelterin. Telomeric DNA ends in a single-

stranded overhangs, which invade the double-stranded region of

telomeres to form a lariat-like protective, T-loop. Telomeric

DNA repetitive sequences also can fold into non-canonial

secondary structures, G-quadruplexes and can be transcribed

into TERRA. Telomeric DNA is bound by telomere-specific

proteins, shelterin, which consist of TRF1, TRF2, RAP1, TIN2,

TPP1 and POT1. The altered telomeres structure and shelterin

complex are essential for the maintenance and integrity of

chromosome ends
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suppressor that is heavily regulated by posttranscrip-

tional modification, and it is inactive in most tumors

and upregulated in senescent cells (Itahana et al.

2001). P21 is the first identified downstream target of

p53, and it can inhibit Cdk2 to block pRb phospho-

rylation. Hypophosphorylated Rb can bind to E2Fs

transcription factors, thus preventing them from

activating transcription genes associated with cell

proliferation to result in cell cycle arrest in the G1

phase (Beausejour et al. 2003; Harper et al. 1993; Shay

et al. 1991; Xiong et al. 1993).

With each round of cell division, telomeres con-

tinuously shrink to a critical length, and cells enter

replicative senescence. However, there are some kinds

of cells such as germline cells, stem cells and cancer

cells that divide continuously without limit. This fact

was the opposite of what had been predicted. In fact,

the key to maintaining telomere length in these cells is

telomerase, which provides a solution to the end-

replication problem (Borah et al. 2015; Kim et al.

1994; Morin 1989). As was described previously,

shelterin complex recruits telomerase to the telomeres

and promotes processive telomere elongation. There-

fore, the majority of human cancer cells expressing

telomerase can bypass the Hayflick limit to become

immortal. Although telomerase is also expressed in

many human cells such as embryonic (ES) cells and

most adult stem cells, it is not sufficient to compensate

for telomere attrition as cells grow, and thus, telomere

shrinking compromises cells proliferating with age in

most tissues (Alder et al. 2015; Harley et al. 1990;

Wang et al. 2016).

Senescence-associated aging

Many studies have shown a strong correlation between

telomere length and aging. For example, reversing the

function or length of telomeres in mice would improve

mouse life span, and telomerase gene therapy can

reverse premature aging and delay physical aging in

mice (Armanios et al. 2009; Bernardes de Jesus et al.

2012; Derevyanko et al. 2017; Steenstrup et al. 2017).

Telomere theory proposes that telomere shortening is

the trigger for aging. However, it remains uncertain

how telomeres lead to aging in organisms. Telomere

attrition is regarded as the primary hallmark of aging

or the cause of age-associated damage resulting in

cellular senescence (Lopez-Otin et al. 2013). Cellular

senescence, a hallmark of aging, can in turn induce

consequential aging (McHugh and Gil 2017). There-

fore, telomere shortening can drive aging through

cellular senescence.

Although there is not insufficient evidence showing

a causal association between cellular senescence and

aging, emerging evidence has shown that cellular

senescence leads to age-related tissue dysfunction

through two key mechanisms, namely, stem cell

exhaustion and senescence-associated secretory phe-

notype (SASP). Stem cells can maintain tissue home-

ostasis through renewing the impaired cells, whose

function can be affected in both cell-autonomous and

cell-nonautonomous manner. The overall decrease in

the regenerative ability of tissues is one of the most

common characteristics of aging. The prominent

manner promoting the decline in tissue regenerative

potential is persistent cell-autonomous growth arrest

in stem cells (Flores et al. 2005; Sharpless and

Depinho 2007). The induction of senescence in stem

cells leads to its exhaustion and decline in function,

which in turn compromises tissue deterioration. For

instance, a cell-autonomous loss of stem cell self-

renewal in skeletal muscle results in a great decline in

skeletal muscle function and regenerative capacity

(Bernet et al. 2014). Research has revealed that muscle

and fat progenitor cells in BubR1 progeroid mice are

highly prone to cellular senescence (Baker et al. 2013).

Despite the fact that sufficient proliferation of stem or

progenitor cells plays a vital role in the maintenance of

the organism, most stem or progenitor cells are

retained in a quiescent state, in which cells are non-

dividing but remain capable of proliferation in

response to extrinsic factors. The quiescence is

important for stem cells to maintain their long-term

repair function for tissues. However, senescent cells

can drive stem cells re-enter the cell cycle through

SASP, which accelerates the exhaustion of stem cell

(Cosgrove et al. 2014; Rera et al. 2011; Sousa-Victor

et al. 2014).

In addition to affecting stem cells by establishing a

persistent growth arrest, senescence could also perturb

the specialized microenvironment, or niche, on which

the optimal function of stem cells depends nonau-

tonomously through the SASP (Brack et al. 2007; Jang

et al. 2011; Pricola et al. 2009). Senescent cells secrete

hundreds of factors manifesting dramatic alterations in

their secretome termed the ‘‘SASP’’, which is enriched

in proinflammatory cytokines, chemokine growth

factors and proteases (Coppe et al. 2010; Kuilman
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and Peeper 2009). Emerging studies utilizing genetic

systems or drugs deleting senescent cells show that the

clearance of senescent cells attenuates inflammation

and creates a proregenerative environment (Jeon et al.

2017). Moreover, many studies have discovered that

the regenerative potential of old stem cells was

markedly improved by exposure to a young systemic

environment (Brack et al. 2007; Conboy et al. 2005). It

is proposed that senescent cells also affect neighboring

cells in a paracrine manner, in which senescent cells

secrete IL-1b, TGFb and certain chemokine ligands

spreading the senescence phenotype to surrounding

cells to reinforce age-related tissue deterioration

(Acosta et al. 2013; Nelson et al. 2012). Recent

reviews proposed a tissue remodeling model in which

the SASP can recruit immune cells to clear the

senescent cells and inflammatory factors and then

progenitor cells repopulate and regenerate the dam-

aged tissue. However, this function of clearance and

regeneration declines with age, which leads to aberrant

tissue architecture due to the accumulation of senes-

cent cells and inflammatory factors in the tissue

(Munoz-Espin and Serrano 2014). Specific compo-

nents of SASP, IL-6 and IL-8, may also stimulate

epithelial tissue fibrosis by inducing epithelial-mes-

enchymal transition (Laberge et al. 2012; Parrinello

et al. 2005). In addition, proteases secreted by

senescent cells may induce tissue structural changes

via cleaving extracellular matrix proteins, signaling

ligands or other components in the tissue microenvi-

ronment (Parrinello et al. 2005; Zhang et al. 2007).

Studies have shown that the clearance of senescent

cells reduces levels of the chronic inflammatory

markers, IL-6 and IL-1b, in aged kidney, heart, liver,

spleen, lung and osteoarthritic knee, which suggests

that the SASP is partially lei behind chronic inflam-

mation, also termed as inflammaging (Baker et al.

2016; Jeon et al. 2017). The intimate correlation

between chronic inflammation and aging phenotypes

such as frailty and age-related diseases has been

supported by many studies (Balestro et al. 2016;

Franceschi and Campisi 2014; Soysal et al. 2016).

Although the SASP can recruit immune cells to

eliminate senescent cells, the adaptive immune system

shows a decline with aging, which is termed

immunosenescence (Nikolich-Zugich 2018). The

decline in the function of the immune system may

result from hematopoietic stem cell dysfunction

(Sahin et al. 2011). Senescent cells secreting

inflammatory factors to promote senescence in an

autocrine or a paracrine manner as well as a decrease

in their clearance may be the reason for the accumu-

lation of senescent cells during aging (He and

Sharpless 2017). It is believed that the accumulative

senescent cells can promote chronic inflammation

through the secretion of proinflammatory growth

factors, cytokines and chemokines and occupy key

cellular niches, eventually impairing tissue homeosta-

sis and contributing to aging (He and Sharpless 2017;

Lawless et al. 2010; van Deursen 2014) (Fig. 2).

Therefore, cellular senescence exerts a profound

influence on the aging process via various mecha-

nisms. Here, we reviewed two main factors. On one

hand, cellular senescence leads to stem cell exhaus-

tion, which then reduces the regeneration capacity of

Fig. 2 Mechanisms of senescence-associated aging induced by

telomere dysfunction. Telomere shortens with cell proliferation

and the critically short telomeres could be recognized as double-

strand DNA damage which activates p53 then resulting in

cellular senescence through the repression of RB. Cellular

senescence leads to exhaustion and function decline of stem cell

and chronic inflammation in tissue which ultimately drive aging
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tissues. On the other hand, senescent cells secrete a

series of factors including proinflammatory cytokines,

chemokines, growth factors, and proteases which

could exacerbate potentially deleterious inflammatory

responses and destroy the environment in which stem

cells function.

Telomere-mitochondria-aging axis

Telomere shortening and mitochondrial

dysfunction

Telomere shortening and mitochondrial dysfunction

have long been considered to be a prime initiation

factor of natural aging. Although there are many

theories that explain how they affect the aging process,

these theories do not take into consideration the

relationship between them. However, emerging evi-

dence indicates the existence of a strong linkage

between telomere attrition and metabolic compromise.

In the previous section, we discussed how telomere

shortening promotes the aging process through cellu-

lar aging. Recent studies have shown that telomere

shortening can also affect mitochondria activity via

multiple ways to initiate the aging process. In this

section, our attention was focused on mitochondria

dysfunction and dysregulated metabolic processes

induced by telomere attrition. The signaling from the

nucleus to mitochondria through the peroxisome

proliferator-activated receptor gamma co-activator

1a/b (PGC-1a/b, the master regulators of mitochon-

drial biogenesis and function) establishes the connec-

tion between telomere shortening and mitochondria

malfunction (Fang et al. 2016). When DNA damage

occurs due to telomere dysfunction, p53 and DDR

pathways are activated, which in turn suppress PGC-

1a and PGC-1b, consequently leading to mitochon-

drial dysfunction (Dabrowska et al. 2015; Sahin et al.

2011). Moreover, research has found that overexpres-

sion of PGC-1a can reverse aging muscle to younger

muscle at the molecular level and plays a significant

role in longevity (Garcia et al. 2018). Another

prominent pathway linking telomere attrition to mito-

chondria dysfunction is the NAD?-SIRT1-PGC-1a
axis. In this axis, short telomeres are sensed as

doubled-strand breaks by nicotinamide adenine dinu-

cleotide (NAD?)-dependent PARP1, which can initi-

ate DNA repair signaling, a process that requires

consumption of NAD?. PARP1 hyperactivation

results in NAD? consumption, hence limiting the

NAD?-dependent deacetyase sirtuin 1 (SIRT1) activ-

ity (Fang 2014; Gibson and Kraus 2012). SIRT1 has

been found to increase mitochondrial function and

biogenesis through transcription factor PGC-1a and

thereby loss of SIRT1 activity could contribute to

mitochondria dysfunction, particularly in muscle

(Fang 2014; Rodgers et al. 2005). In addition to the

NAD?-SIRT1-PGC-1a axis, SIRT1 also has been

proposed to inhibit mitochondrial transcription factor

A (TFAM) via the SIRT1-HIF-1a-Myc-TFAM path-

way, independently of PGC-1a, increasing mitochon-

drial compromise (Gomes et al. 2013). Heap of

evidence suggests that the role of telomere attrition

in ageing has been linked to the decreased mitochon-

drial biogenesis and function. However, the emerging

study indicates that telomere shortening may also have

an impact on the aging process via increasing mito-

chondria biogenesis. In this study, researchers pro-

posed that the activation of ATM due to DNA damage

activates AKT and mechanistic target of rapamycin

complex 1 (mTORC1), resulting in PGC-1b-depen-

dent mitochondrial biogenesis and ROS generation

(Correia-Melo et al. 2016). Therefore, whether the

mitochondrial synthesis is too much or too little will

lead to the dysfunction of mitochondria. Only when

the mitochondria biogenesis maintains homeostasis,

can the mitochondria perform its optimal function

(Fig. 3).

Mitochondrial dysfunction-related aging

In the previous section, we summarized telomere

shortening leads to mitochondrial dysfunction through

multiple pathways. Mitochondria are crucial for

energy generation, producing adenosine triphosphate

(ATP) through oxidative phosphorylation and also

play an essential role in cell metabolic homeostasis,

signaling, differentiation and senescence (Fang et al.

2016; Kauppila et al. 2017). Thus, the malfunction of

mitochondria will bring about decreased ATP pro-

duction, increased ROS generation, diminished

antioxidant defense and metabolic disorders.

Impaired mitochondrial function and alterations of

mitochondrial biogenesis have been linked to key

aspects of the aging process, including cellular

senescence, the decline in stem cell activity and

chronic inflammation (Kauppila et al. 2017; Sun et al.
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2016). Here, we reviewed how mitochondria dysfunc-

tion promotes aging through impacting on these key

aspects. Mitochondrial dysfunction has been related to

the perturbation of metabolic homeostasis, including

gluconeogenesis, fatty acid metabolism and b-oxida-

tion which are the basis of cell survival. Decline in cell

function is believed to be a result from dysregulated

metabolism which could promote cellular senescence

through multiple pathways (Sui et al. 2016; Wiley and

Campisi 2016). Many studies have suggested that

mitochondrial dysfunction induces cellular senes-

cence through different pathways. It is well known

that excessive ROS, which is generated by mitochon-

dria, plays a critical role in cellular senescence

(Colavitti and Finkel 2005; Frankel et al. 2013). In

addition to driving senescence, evidence has also

shown that the excessive production of ROS due to

telomere shortening can stabilize the DDR and

maintain persistent cellular senescence (Correia-Melo

et al. 2016). Decreased ATP production in dysfunc-

tional mitochondria increases the adenosine

monophosphate (AMP)-to-ATP ratio that promotes

cellular senescence through stimulating AMP-acti-

vated protein kinase (AMPK), which is a central

mediator of cellular metabolism (Mihaylova and Shaw

2011; Zwerschke et al. 2003). Furthermore, recent

studies have proposed a mitochondrial dysfunction-

associated senescence (MiDAS) and revealed a mech-

anism by which mitochondrial malfunction can

improve the aging process. This study suggested that

compromised mitochondria decreased NAD?/NADH

ratios, resulting in MiDAS via activating AMPK,

which induces a p53-dependent senescence, and

revealed that mitochondrial dysfunction induces aging

phenotypes through distinct SASP components such

as IL-10, CCL27, TNFa and HMB1, which affect

surrounding cells in a paracrine manner (Davalos et al.

2013; Frankel et al. 2013; Wiley et al. 2016). Due to

the opinion that functional decline of stem cells is

closely related to aging, there is increasing interest in

the relationship between mitochondrial dysfunction

and stem cell function (Lopez-Otin et al. 2013).

Recent studies have shown that increasing ROS can

trigger hematopoietic stem cell and progenitor entry

into the cell cycle and ultimately stem cell exhaustion

due to the decreased capacity for self-renewal (Mar-

yanovich et al. 2015). As the center of metabolism,

emerging evidence indicated that mitochondrial

metabolism also plays a critical role in the self-

renewal and differentiation of stem cells (Chandel

et al. 2016; Ito and Suda 2014). It is known that

quiescent stem cells maintain basal metabolic activity

through glycolysis and low respiratory activity and

metabolic disorder predicatively leads to stem cell

dysfunction (Takubo et al. 2013). The mitochondrial

respiratory chain is also essential for maintaining fetal

Hematopoietic stem cell (HSC) differentiation into

progenitor and adult HSC quiescence. Therefore,

respiratory impairment induced by mitochondrial

dysfunction will cause a defect in HSC differentiation,

which then leads to loss of quiescence and entry into

the cell cycle giving rise to an exhausted progenitor

cell pool and lethality (Anso et al. 2017). A decrease in

NAD? levels contributing to aging phenotypes has

been reported by many studies, and evidence has also

been found showing that increased mitochon-

drial NAD? levels delay stem cell senescence and

improve life span in mammals (Prolla and Denu 2014;

Son et al. 2016; Verdin 2015; Zhang et al. 2016).

Mitochondrial malfunction also affects another hall-

mark of aging, chronic inflammation. One of the most

common mechanisms of chronic inflammation is

oxidative stress as a consequence of excessive gener-

ation of ROS, which can elicit further mitochondrial

Fig. 3 Telomere dysfunction regulates the biogenesis and

function of mitochondria. Telomere attrition modulates mito-

chondrial biogenesis and function via PARP1-NAD?-SIRT1,

ATM/R-P53-PGC1a/b and ATM-AKT-mTOR-PGC1b path-

ways. The activation of these three pathways eventually results

in mitochondrial dysfunction and the increased ROS
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dysfunction and ROS generation, forming a vicious

circle of oxidative damage. Mechanistically, a recent

study has found that telomere attrition caused severe

inflammation primarily based on hyperactivation of

the NLRP3 inflammasome through mitochondrial

oxidative stress (Kang et al. 2018). Taken together,

this article indicates that mitochondrial dysfunction

induced by telomere attrition contributes to the aging

process through cellular senescence, stem cell func-

tion decline and chronic inflammation (Fig. 4).

Conclusions and future directions

Increasing evidence has suggested that the loss of

telomere repeats in cells contributes to human aging.

Here, we reviewed the main mechanisms involved in

the protection of chromosome ends and the role of

telomere shortening in the aging process. We conclude

that altered telomere structure, shelterin complexes

and compact telomeric chromatin together protect

chromosome ends and telomere attrition promotes

aging through initiating cellular senescence and mito-

chondrial malfunction. Although telomere shortening

has been considered a primary hallmark of aging, the

model of aging in this article cannot explain the aging

process exactly because the average telomere length

shows great variation between individuals of the same

age. Furthermore, it is still a challenge to understand

the exact mechanisms by which cellular senescence

and mitochondria drive aging directly.

Deciphering the aging model proposed in this

article could advance the development of antiaging

interventions. In this aging network, telomere short-

ening is the primary molecular cause of aging, and

thus, telomere is an important interventional target for

anti-aging. Critically short telomeres owing to telom-

erase deficiency can be rescued by telomerase activa-

tion. In recent years, several telomerase-based

antiaging strategies have developed, mainly including

chemical telomerase activator, telomerase expression

activator and telomerase gene therapy. Contemporary

evidence indicates that TA-65, a small molecule

activator, can restore telomere length and improve

the health span of mice without increasing cancer

incidence (Bernardes de Jesus et al. 2011). In addition

to activating telomerase directly, studies found that

sex hormones, TERT transcription activator, also

rescue telomere shortening and extend mice life span

(Bar et al. 2015; Calado et al. 2009). More recently,

evidence has suggested that the reactivation of telom-

erase activity by gene therapy is sufficient to extend

mouse longevity and delay aging without increasing

cancer (Bernardes de Jesus et al. 2012). However,

constitutive telomerase expression is a feature of

almost all cancer cells. Considering their ability to

induce cancer, telomerase-based interventions should

be taken with caution (Bar and Blasco 2016). Because

increasing senescent cells and inflammation play a

prominent role in the aging process, clearing senescent

cells and attenuating the SASP have been regarded as

important strategies towards anti-aging. There is

increasing evidence that the elimination of senescent

cells using senolytics, small molecules that specifi-

cally ablate senescent cells, augments organ function

Fig. 4 A model of mitochondrial compromise-related aging

elicited by telomere attrition. In this model, telomere attrition-

induced mitochondrial dysfunction leads to defective ATP

generation, NAD? reduction, increased levels of ROS and

metabolic changes which regulate multiple pathways in cells.

Consequently, the activation of these pathways triggered by

mitochondrial dysfunction gives rise to stem cell exhaustion and

inflammation in tissue and drive aging
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and mice lifespan (Baker et al. 2011; Jeon et al. 2017;

Zhu et al. 2015). Several effective SASP suppressors

such as rapamycin, metformin and sirtuin activator

have been shown to alleviate age-related tissue

deterioration and extend prolong life-span (Herranz

et al. 2015; Hitchings et al. 2015; Laberge et al. 2015;

Nakamaru et al. 2009). Mitochondrial compromise

plays a crucial role in aging pathway, and thus,

rescuing function of mitochondria may be an effective

method to combat aging. From the pathways we have

summarized, it is feasible to improve mitochondria

function via activating SIRT1, which is considered to

be a promising target for slowing down aging process

(Grabowska et al. 2017). Increasing evidences have

proposed that caloric restriction and physical exercise

promote mitochondrial biogenesis and function

through activation of SIRT1 (Cohen et al. 2004;

Rodgers et al. 2005). As a NAD?-dependent enzyme,

SIRT1 activity is also improved by NAD? repletion

(Zhang et al. 2016). While the increased generation of

ROS is the major feature of mitochondrial compro-

mise, the utilization of anti-oxidants, N-acetyl cys-

teine (NAC), has been demonstrated to ameliorate the

adverse effect of ROS. Since mTOR causes the PGC-

1b-dependent ROS production, the inhibitor of mTOR

such as metformin and rapamycin can also reduce

ROS (Barzilai et al. 2016; Laplante and Sabatini

2012). Stem cells are fundamental to the regeneration

of tissue and thus the maintenance of stem cells plays

an essential role in tissue function. Emerging evidence

has suggested that supplementing stem cell through

reprogramming technology or stem cell transplanta-

tion has resulted in tissue and organ functional

rejuvenation (Copelan 2006; Rocheteau et al. 2015;

Wahlestedt et al. 2013). Above all, every key point in

the aging process is likely to be an effective antiaging

target. Therefore, a comprehensive model and a

breakthrough at the molecular level of aging are

required for the discovery of antiaging interventions.

Exploring the aging process at the molecular level is

still a challenge, and understanding this will provide a

clearer picture for antiaging therapies.
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