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The systematic investigation of gene mutation and
expression is important to discover novel biomarkers
and therapeutic targets in cancers. Here, we integrated
genomics, transcriptomics, proteomics, and metabolo-
mics to analyze three hepatocellular carcinoma (HCC) cell
lines with differential metastatic potentials. The results
revealed the profile of the prometastasis metabolism po-
tentially associated with HCC metastasis. The multiomic
analysis identified 12 genes with variations at multiple
levels from three metabolic pathways, including glycoly-
sis, starch, and sucrose metabolism, and glutathione me-
tabolism. Furthermore, uridine diphosphate (UDP)-glu-
cose pyrophosphorylase 2 (UGP2), was observed to be
persistently up-regulated with increased metastatic po-
tential. UGP2 overexpression promoted cell migration and
invasion and enhanced glycogenesis in vitro. The role of
UGP2 in metastasis was further confirmed using a tumor
xenograft mouse model. Taken together, the compen-
dium of multiomic data provides valuable insights in un-
derstanding the roles of shifted cellular metabolism in
HCC metastasis. Molecular & Cellular Proteomics 17:
10.1074/mcp.RA118.000586, 607–618, 2018.

Hepatocellular carcinoma (HCC)1 is the second leading
cause of cancer-related death in the world (1). Liver transplan-

tation and resection are believed to be the best approaches to
treat HCC and to deliver long-term survival for HCC patients
(2, 3). However, these methods are not applicable for ad-
vanced HCC, and the overall prognosis for HCC remains poor
mostly due to tumor metastasis and recurrence (4). Metasta-
sis, the spread of tumor from its primary site to other parts of
the body, defines the switch between benign tumor and ma-
lignant cancer. Metastasis is estimated to be responsible for
�90% of cancer-associated deaths (5). To explore the under-
lying mechanisms of HCC metastasis is crucial for developing
novel and more efficient HCC treatments, especially for ad-
vanced HCCs.

The reprogramming of cellular metabolism has been recog-
nized as a key hallmark of cancer (6). Since Otto Warburg first
reported that some cancer cells use the glycolysis pathway
for energy production even in the presence of oxygen, it has
become more and more clear that cancer cells rewire the
metabolic fluxes to cope with various microenvironmental
situations in order to sustain proliferation and invasion (7).
Increasing evidence suggests that metabolism is also a major
driver for cancer metastasis (8, 9). For example, a glycolytic
enzyme phosphoglucoseisomerase has long been known as
the autocrine motility factor that promotes tumor cell migra-
tion and invasion (10). The glycolytic end-product lactate is
reported to be positively associated with metastasis in many
types of cancer (11). Lipid metabolism has also been impli-
cated in tumor metastasis (12). A recent study shows that
blocking lipid synthesis can overcome tumor metastasis after
antiangiogenic therapy (13). However, the detailed metabo-
lism shift associated with metastasis is still largely unclear. As
for HCC, most studies have focused on the investigation of
glucose metabolism (14). For instance, the up-regulation of
several enzymes in the glycolysis pathway, including pyruvate
kinase M2 (PKM2), glucose transporters (GLUTs), lactate de-
hydrogenase, etc., have been reported to be associated with
HCC progression and poor prognosis (15–17). However, less
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is known about the other metabolic pathways. More impor-
tantly, the link between metabolism and HCC metastasis is
still missing.

The metabolic reprogramming in cancer is a highly compli-
cated process that requires the coordination of diverse inter-
twined metabolic pathways. These pathways form a dynamic
network that is regulated by multiple levels of gene expres-
sion. Therefore, a large-scale and comprehensive analysis of
cancer cell metabolism is required to understand the mech-
anisms and functional consequences of metabolic alterations
associated with metastasis. In this study, we integrated data
of genomics, transcriptomics, proteomics, and metabolomics
from three HCC cell lines, including a low-metastatic cell line,
Huh7; a medium-metastatic cell line, MHCC97L; and a highly
metastatic cell line, HCCLM3, to mine potential genes and
pathways contributing to HCC metastasis. Based on the mul-
tiomic analysis and functional study, UDP-glucose pyrophos-
phorylase 2 (UGP2), an enzyme critical for glycogen synthe-
sis, was found to play an essential role in promoting HCC cell
migration and tumor metastasis. Overall, our study described
a systematic view of the cellular metabolism associated with
HCC metastasis, providing valuable information for develop-
ing novel prognostic tools and therapeutic strategies for HCC.

EXPERIMENTAL PROCEDURES

Antibodies and Reagents—Dithiothreitol (DTT), iodoacetamide,
urea, formaldehyde, deuterated-formaldehyde, C13-labeled deuter-
ated-formaldehyde, sodium cyanoborohydride, and deuterated so-
dium borocyanohydride were purchased from Sigma Aldrich (St.
Louis, MO, USA); Mouse monoclonal antibody against �-actin was
purchased from Santa Cruz (Santa Cruz, CA, USA); rabbit polyclonal
antibody against UGP2, rabbit monoclonal antibodies against ATP-
dependent 6-phosphofructokinase (PFKP), glutamate-cysteine ligase
regulatory subunit (GCLM), glutathione S-transferase omega-1, and
thioredoxin domain-containing protein 12 were purchased from Ab-
cam (Cambridge, MA, USA). Rabbit polyclonal antibody against gly-
cogen phosphorylase (PYGB) and PKM2 were bought from Protein-
tech (Chicago, IL, USA). BCA reagents were purchased from
Invitrogen (Grand Island, NY, USA). Enhanced chemiluminescence
reagents were purchased from Pierce Biotechnology (Rockford, IL,
USA). Protease Inhibitor Mixture tablets were purchased from Roche
Diagnostics (Indianapolis, IN, USA). Sequencing-grade modified tryp-
sin was purchased from Promega (Madison, WI, USA). Acetonitrile
was from Merck (Whitehouse Station, NJ, USA). Water used in this
study was deionized using a Milli-Q purification system (Millipore,
Billerica, MA, USA).

Cell Lines—LO2 cells and HCC cell lines, including Huh7,
MHCC97L, HCCLM3, PLC, HepG2, MHCC97H, and Hep3B, were
cultured in DMEM supplemented with 10% fetal bovine serum and
1% penicillin-streptomycin (100 �g/ml) at 37 °C in a humidified at-
mosphere with 5% CO2.

Whole-exome Sequencing and Variation Calling—Genomic DNA
was extracted from Huh7, MHCC97L, and HCCLM3 cells using a
TIANamp Genomic DNA Kit (Tiangen, Beijing, China) according to the
manufacturer instructions. Deep-coverage exome sequencing for
HCC cell lines of Huh7 (111�), MHCC97L (131�), and HCCLM3
(124�) were performed at Shanghai Biotechnology Corporation
(Shanghai, China) using the illumina 2500 platform (2 � 125 bp).
Adapters and low-quality sequences were cleaned by using Trimmo-
matics (18). Cleaned reads were mapped to the reference genome

(GRCh38) with Burrows-Wheeler Aligner (BWA) (19). On average,
99.9% of the exon positions in the reference genome were covered
by the studied samples. We then removed duplicated reads and
sorted remaining reads with SAMtools (20).

VarScan 2 was used to call candidate single-nucleotide polymor-
phisms (SNPs) (21). The putative SNPs in cell lines were determined
using the additional steps: (1) the SNPs showing read depth � 20 and
phred score � 15 were removed. (2) We required that a SNP at a
certain nucleotide position should be supported by two or more reads
on forward strand and two or more reads on reverse strand, as well as
be supported by at least 50% of the reads covering this position.
Finally, the specific SNPs in MHCC97L and HCCLM3 were identified
as these distinguishing from the Huh7 cell line. We removed SNPs
from the Single Nucleotide Polymorphism database (dbSNP147).

A sliding window approach (CNV-seq) (22) was adopted by using
the 100 kb windows sliding in 50 kb increments to estimate read
number (coverage) of each window in the three cell lines. The cover-
age of each window was normalized by the mean coverage of win-
dows for each cell line. Copy numbers of MHCC97L and HCCLM3
were estimated by comparing the normalized coverage of the paired
window between an MHCC97L cell and Huh7 cell, as well as between
an HCCLM3 cell and Huh7 cell.

Microarray Analysis—Total RNAs from Huh7, MHCC97L, and
HCCLM3 cells were isolated using Trizol reagent (Life Technologies,
Carlsbad, CA, USA). A hybridization-based microarray assay was
performed at Shanghai Biotechnology Corporation using the Human
lncRNA expression microarray (4 � 180K, Agilent). We used three
biological replicates for each cell line. Over 20,000 coding genes
were covered by Agilent probes in each cell sample. The raw data of
nine samples were normalized using the R package limma (quantile
algorithm).

Proteolysis and Triplex Dimethylation Isotopic Labeling—Cells were
lysed with 8 M urea, and the protein concentration was measured
using BCA assay. The samples were reduced by incubating with 10
mM DTT at 37 °C for 1 h. The reduced proteins were alkylated for 1 h
in darkness with 40 mM iodoacetamide. The alkylation reaction was
quenched by adding DTT to a final concentration of 50 mM. The urea
in the solution was exchanged to 50 mM sodium bicarbonate buffer by
centrifugation using 3 kDa ultrafiltration devices (Millipore). The sam-
ples were incubated with trypsin at 37 °C overnight for the digestion
to complete. For triplex dimethylation isotopic labeling, sodium cya-
noborohydride was added to the protein digest for a final concentra-
tion of 50 mM, and the deuterated sodium borocyanohydride was
used for the heavy labeled samples. Samples were incubated with 0.2
mM formaldehyde, deuterated-formaldehyde or C13-labeled deuter-
ated-formaldehyde, respectively, at 37 °C for 1 h. The reaction was
quenched with 2 M NH4OH, and the samples were mixed and sepa-
rated using high pH RP-HPLC.

Proteomics—Tryptic digested samples were injected onto an
HPLC system (Waters, Milford, MA, USA) coupled with a high pH
stable C18 column (Phenomenex Gemini C18, 150 � 2.1 mm, 3 �m)
at a flow rate of 150 �l/min. The peptides were eluted with a 40-min
gradient 5–45% buffer B (Buffer A: 50 mM ammonium formate, pH 10;
Buffer B: acetonitrile). Fractions were collected every 3 min for 60 min.
Collected fractions were dried by SpeedVac (ThermoFisher Scientific,
Waltham, MA, USA) and reconstituted in 20 �l of 0.1% formic acid for
the downstream LC-MS/MS analyses.

The tryptic peptide samples eluted from the first-dimensional
HPLC were desalted using C18 ziptip and loaded on a nanoUPLC
system (Waters) equipped with a self-packed C18 column (C18,
150 � 0.075 mm, 1.7 �m). The peptides were eluted using a 5–40%
B gradient (0.1% formic acid in acetonitrile) over 90 min into a nano-
electrospray ionization Q Exactive mass spectrometer (ThermoFisher
Scientific). The mass spectrometer was operated in data-dependent
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mode in which an initial Fourier transform (FT) scan recorded the
mass range of m/z 350–1,500. The spray voltage was set between 1.8
and 2.0 kV, and the mass resolution used for MS scan was 70,000.
The dynamic exclusion was set to 45 s. The top 20 most intense
masses were selected for higher-energy collision dissociation frag-
mentations. MS/MS spectra were acquired starting at m/z 200 with a
resolution of 17,500. The automatic gain control (AGC) target value
and maximum injection time were set as 1e6 and 100 ms, respec-
tively, for MS scans, as well as 5e4 and 110 ms for MS/MS scans.

Raw data were searched against the Uniprot (release December
2016) human protein database containing 129,499 sequence entries
using the SEQUEST database search algorithm embedded in the
Protein Discoverer 1.4 Software (ThermoFisher Scientific). The follow-
ing parameters were applied during the database search: 10 ppm
precursor and fragment mass error tolerance, static modifications of
carbamidomethylation for all cysteine residues, dimethylation for the
formaldehyde labeling (�28 Da), deuterated-formaldehyde labeling
(�32 Da), or C13-labeled deuterated-formaldehyde labeling (�36 Da)
on lysines and the N terminus, flexible modification of oxidation
modifications for methionine residues, and one missed cleavage site
of trypsin were allowed. To determine the confidence of identification,
false discovery rate was calculated by searching a decoy database
generated by reversing all the protein sequences, and false discovery
rate �0.01 was used as filtering criterion for all identified peptides. In
addition, proteins identified with two or more peptides were consid-
ered, and proteins identified with the same set of peptides were
grouped and treated as one. Quantification analysis was conducted
using the Protein Discoverer 1.4 software. Ratios between the three
HCC cell lysates were calculated based on the extracted chromatog-
raphy areas and normalized using the median.

Metabolomics—To analyze the metabolites in the three HCC cell
lines, we employed a quantitative polar metabolomics profiling plat-
form by using selected reaction monitoring with a 5500 QTRAP hybrid
triple quadrupole mass spectrometer (AB/SCIEX, Framingham, MA)
that covered all major metabolic pathways by using a protocol re-
ported by Yuan et al. (23). Briefly, we extracted the metabolites from
107 cells with 80% (v/v) methanol (cooled to �80 °C). The metabolites
were separated with hydrophilic interaction liquid chromatography
(3.5 �m; 4.6 mm inner diameter � 100 mm length; Waters) and
detected with positive/negative ion switching to analyze 287 metab-
olites (315 Q1/Q3 transitions) from a single 15-min LC-MS acqui-
sition with a 3-ms dwell time and a 1.55 s duty cycle time. Once the
selected reaction monitoring data were acquired, peaks were inte-
grated to generate chromatographic peak areas used for quantifi-
cation across the sample set by using MultiQuant 2.0 (AB/SCIEX).

Raw Data Processing—For the raw data of transcriptome, pro-
teome, and metabolome, the redundant data were merged, and then
each sample was scaled and centered. We marked outliers with
normalized values larger than three. There were three, six, and three
replicates in each cell line for transcriptome, proteome, and metabo-
lome. Here, we allowed one, three, and two abnormal or missed
replicates for each cell line in the transcriptome, proteome, and
metabolome, respectively. The mRNAs, proteins, and metabolites
that did not fit the criteria in replicate counts were removed. All the
outliers and missed replicates were supplied by multiple interpolation
method using R package mice.

Differential Modules Analysis—To investigate the association be-
tween metastatic capabilities and the levels of mRNA, protein, and
metabolite, weighted correlation network analysis (WGCNA) (24) was
applied for finding clusters (modules) of highly correlated genes or
metabolites. We quantitated the metastatic capability as 1, 2, 3 for
Huh7, MHCC97L, and HCCLM3 (trait 1) or as 1, 2, 2 for Huh7,
MHCC97L, and HCCLM3 (trait 2). Soft threshold powers were set as
10, 10, 20 for the interpolated data of transcriptome, proteome, and

metabolome. Here, we kept modules that significantly correlated to
traits (r � 0.8 or r � -0.8; p � 0.05), and then kept mRNAs, proteins
or metabolites that significantly correlated to the traits in these mod-
ules (r � 0.8 or r � -0.8; p � 0.05).

KEGG and Gene Ontology (GO) Enrichment—For mRNAs and pro-
teins, R package KEGGprofile was used for human Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway analysis (p � 0.05),
and protein analysis through evolutionary relationships (PANTHER)
database search (http://pantherdb.org/) was used for GO analysis.
Mbrole 2.0 (http://csbg.cnb.csic.es/mbrole2/) was used for KEGG
pathway analysis for the metabolites (p � 0.05) (25).

Quantitative Reverse Transcription PCR (qRT-PCR)—Total RNA
was transcripted to complementary DNA using a FastQuant RT kit
(TianGen) according to the manufacturer’s protocols. Quantitative
mRNA expression analysis was performed on a 7500 Fast Real-
Time PCR System (ABI, Foster City, CA, USA) using the SuperReal
SYBR Green PreMix (TianGen) following the manufacturer’s proto-
cols. The mean Ct for each sample was normalized to 18s-rRNA as
the reference gene (for primer sequences, see Supplemental Table
S1).

Western Blotting—Protein concentration of each cell extracts was
assayed using BCA protein assay kit (ThermoFisher Scientific), and
the same amount of proteins was separated by SDS-PAGE and
transferred onto the polyvinylidene fluoride membranes using a wet
electro-blotter. The membranes were incubated with primary antibod-
ies at 4 °C overnight, followed by incubation with secondary antibod-
ies at room temperature for 1 h. Bound antibodies were detected by
the enhanced chemiluminescence (ECL) immunoblotting detection
reagent.

Plasmid and Transfection—DNA with the complete coding se-
quence of UGP2 was amplified by PCR using the Premix TaqDNA
Polymerase (TaKaRa, Otsu, Japan). The flanking NheI and BamHI
restriction sites were created, and the UGP2 DNA was cloned in the
pCDH-GFP lentivector expression vector (System Biosciences, Palo
Alto, CA, USA). The UGP2 construct was transfected into cells using
Lipofectamine 2000 (Life Technologies, Paisley, Scotland). The over-
expression efficiency of UGP2 was measured by qRT-PCR and West-
ern blotting. The primer sequences used for cloning the full-length
UGP2 are listed in Supplemental Table S2.

Wound-healing, Migration, and Invasion Assays—In a wound-heal-
ing assay, 5 � 105 cells/well were seeded in six-well plate, allowed to
grow for 24 h to 90–100% confluence, and starved overnight. A
scratch was created through the confluent monolayer using a sterile
pipette tip. The floating cells were removed with serum-free medium.
Then, the cells were cultured with medium containing reduced fetal
bovine serum (FBS, 2%) for another 24 h. The remaining width of the
scratch was recorded from five randomly selected fields.

Migration and invasion assays were performed using 24-well tran-
swell chamber filters (Millicell Hanging Cell Culture Insert, polyethyl-
ene terephthalate 8.0 �m, Millipore). For the invasion assays, the
membrane was prepared with Matrigel (BD Biosciences, San Jose,
CA, USA) following the manufacturer’s protocols. After starvation
overnight, 1 � 105 cells in 200 �l of serum-free medium were added
to the upper chamber for incubation at 37 °C. Next, 600 �l DMEM
with 10% FBS were added to the lower chamber. Then, nonmigrated
or noninvaded cells on the upper membrane surface were removed
with a cotton swab, and the migrated and invasive cells on the lower
membrane surface were fixed, stained with 0.01% crystal violet so-
lution for 10 min, imaged, and counted in five random 200� micro-
scopic fields.

Glycogen Content Measurement—The glycogen was quantified
using a glycogen detection kit (Jiancheng, Nanjing, China) according
to the manufacturer’s protocol. First, 50 mg of tumor tissues or cells
were washed with normal saline, mixed with alkali solution, and
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boiled for 20 min. Then, the solution was mixed with detection
solution, vortexed, and boiled for 5 min before the absorbance was
measured at 620 nm wave length. The contents of glycogen were
determined by using the standard curve measured at the same
time.

In Vivo Metastasis Assay—In vivo metastasis assays were per-
formed using five-week-old male BALB/c-nude mice (Chinese Acad-
emy of Sciences, Beijing, China) (26). Briefly, 2 � 106 cells were mixed
with 20 �l of serum-free DMEM and 20 �l of Matrigel, then orthoto-
pically inoculated in the left hepatic lobe by a microsyringe through an

FIG. 1. Genomic variations. (A) Frequency of base pair mutations of two types of transitions (A:T-to-G:C and G:C-to-A:T) and four types of
transversions (A:T-to-T:A, G:C-to-T:A, A:T-to-C:G, and G:C-to-C:G). (B) Venn diagrams showing the overlap of SNPs among Huh7, MHCC97L,
and HCCLM3 cells in exon/intron boundaries (noncoding regions), as well as in coding regions, including nonsynonymous and synonymous
mutations. (C) Correlation of the relative copy numbers between MHCC97L and HCCLM3 genome. Each dot represents log value of the relative
copy number of paired sliding window between two genomes. Orange dots denote up-regulated dCNAs, whereas blue dots denote
down-regulated dCNAs. (D) Overview of the relative copy number profiles with chromosomal landscape. Each line represents the profile of a
sliding window, with gains in orange and deletions in blue. (E) GO analysis and (F) KEGG pathway analysis based on genes with differential
genomic variations that are potentially associated with increased metastatic capability.
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8-mm midline incision in the upper abdomen under anesthesia. Four
mice were used for each cell line. Mice were sacrificed after 6 weeks.
The livers were dissected, tumor nodes were counted, and the tumor
tissues were used for biochemical assays. The experimental proto-
cols were evaluated and approved by Tianjin Medical University An-
imal Care and Use Committee.

Experimental Design and Statistical Rationale—For proteomics,
three biological replicates and two technical replicates were investi-
gated for each type of cell, resulting in six data points for each cell line
for quantification. Statistical and correlation analysis was performed
in the same way as the transcriptomics and metabolomics data by
WGCNA as described in details in the sections of “Raw Data Proc-
essing” and “Differential Modules Analysis.”

Data Availability—All sequencing data that support this study have
been deposited in the NCBI (Bioproject: PRJNA399198). These raw
data of cell lines are available under the following experiment acces-
sions: Huh7 (SRX3108375), MHCC97L (SRX3108376), and HCCLM3
(SRX3108377). Microarray data have been deposited in the NCBI
(Bioproject: PRJNA382487, GEO accessions: GSE97626). These raw
data of cell lines are available under the following experiment

accessions: Huh7 (GSM2573327, GSM2573328, GSM2573329),
MHCC97L (GSM2573324, GSM2573325, GSM2573326), and HCCLM3
(GSM2573330, GSM2573331, GSM2573332). The proteomic data
have been deposited to the ProteomeXchange Consortium via the
proteomics identifications database PRIDE (27) partner repository
with the dataset identifier PXD005647.

RESULTS

To understand the relationship between cellular metabolism
and metastasis in HCC, we employed a multiomic strategy to
compare the genome, transcriptome, proteome, and metabo-
lome in three different HCC cell lines with increasing meta-
static capabilities, including Huh7, MHCC97L, and HCCLM3
cells. Huh7 is a well differentiated hepatocyte-derived cellular
carcinoma cell line that was originally taken from a primary
liver tumor, and the MHCC97L and HCCLM3 cell lines were
both derived from a metastatic tumor with differential meta-
static capabilities (28, 29). First, whole-exome sequencing

FIG. 2. Analysis of the transcriptomic and proteomic data. WGCNA is applied to investigate the differential expression modules. (A) Two
significant modules illustrating the up-regulated (pink) and the down-regulated (purple) gene expressions along with the metastatic capability
for transcriptomic (left) and proteomic (right) data. Each dot denotes the mean level of the normalized mRNAs (left) and proteins (right) in Huh7,
MHCC97L, and HCCLM3 cells, respectively. (B) Heatmaps showing gene expression changes of the up-regulated (pink) and down-regulated
(purple) modules for transcriptomic (up) and proteomic (down) data. (C) Venn diagrams showing the overlap of the genes between
transcriptomic and proteomic data in the up-regulated (left) and down-regulated (right) modules. (D) KEGG pathway analysis based on the
overlapped 311 genes between transcriptomics and proteomic data. The top 30 relevant pathways are shown.
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was performed to analyze the SNPs and copy number alter-
ations (CNAs); then, microarray analysis was performed to
examine the levels of mRNAs; next, a high-resolution Q Ex-
active mass spectrometer was employed to quantitatively
analyze the protein expressions in the three cell lines; finally,
a targeted LC-MS/MS strategy was applied to examine the
relative levels of metabolites. The data from genomic, tran-
scriptomic, proteomic, and metabolomic analyses were inte-
grated to describe the landscape of HCC metabolism in the
context of metastasis (Supplemental Fig. S1).

Genomic Variations in HCC Cells—First, we profiled the
mutations in the three cell lines by whole-exome sequencing
analysis, and identified a total of 2,726, 1,562 and 1,374
variants (SNPs and indels) in the coding regions or exon/
intron boundaries for Huh7, MHCC97L, and HCCLM3, re-
spectively. The mutations were enriched in two types of tran-
sitions, i.e. A:T-to-G:C and G:C-to-A:T (Fig. 1A). This mutation
spectrum was consistent with a previous genomic study using
clinical samples of liver cancer (30), as well as the analysis
results based on the genomic data of 266 HCC samples from
The Cancer Genome Atlas (https://cancergenome.nih.gov/)
(Supplemental Fig. S2). The SNP spectra of MHCC97L and
HCCLM3 were quite similar due to the same genetic back-
grounds between these two cell lines. As compared with the
two metastatic cell lines, Huh7 showed a higher percentage of
G:C-to-T:A transversion (Fig. 1A). This difference was also

confirmed by comparing the mutation spectra between non-
metastatic (M0) and metastatic (M1) liver cancer samples from
The Cancer Genome Atlas records (Supplemental Fig. S2).

The majority of the mutations were in the noncoding regions
of the genome (Fig. 1B). We here focused on nonsynonymous
SNPs (nsSNPs). There were 12 nsSNPs commonly seen in all
the three cell lines (Fig. 1B), including NPC1, PRAMEF13,
DRB1, MUC3A, COX3, ND4, etc. Compared with the Huh7
cell line, 169 and 65 nsSNPs were specifically observed in
MHCC97L and HCCLM3, respectively. These metastatic-cell-
specific nsSNPs involved 185 genes. Twenty-one nsSNPs
were detected in both of the two metastatic cell lines, and
nine of them were predicted to be damaging mutations by
PolyPhen-2 (score � 0.8) (31). These nine nsSNPs were from
six genes, including GOLGABA, HDAC6, RIBC2, CDC27, etc.
(Supplemental Fig. S3).

Using a sliding window method, the copy number patterns
of the two metastatic cell lines were profiled by using Huh7
cells as the control. MHCC97L and HCCLM3 cells displayed
very similar relative copy number patterns (r � 0.976, p �

2.2 � 10�16; Fig. 1C and 1D). CNAs of the two metastatic cell
lines were determined by using 40% variation ratio as the
cutoff threshold. Up-regulated CNAs were observed in 19.8%
and 18.8% of the MHCC97L and HCCLM3 regions, while
down-regulated CNAs were observed in 13.6% and 7.1% of
the MHCC97L and HCCLM3 regions, respectively. The abun-

FIG. 3. Multiomics integration. (A) Heatmap of the metabolites in the modules significantly related with metastasis. (B) The integrative
multiomic data analysis revealed 12 genes that potentially affect HCC metastasis. The genes were identified by integrating the KEGG pathway
analysis results of gene expression and metabolomics. Only genes verified by qRT-PCR are shown here. The gray, orange, and green color
lumps denote that the levels of CNA, mRNA, protein, and metabolite are unchanged, up-regulated, down-regulated, respectively.
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dant CNAs suggested that the copy number patterns of
MHCC97L and HCCLM3 cells were distinct from Huh7 cells
(Fig. 1D). To investigate the correlations between the CNA
patterns and metastatic potential, we extracted significant
differential CNAs (dCNAs) that continuously up-regulated or
down-regulated in the order of Huh7, MHCC97L, and
HCCLM3. As a result, 3,321 significant dCNAs were detected,
including 2,309 up-regulated dCNAs (orange dots, Fig. 1C),
and 1,012 down-regulated dCNAs (blue dots, Fig. 1C). These
dCNAs were from 2,449 genes and most frequently occurred
in Chr. 3 (21.3%) and Chr. 19 (24.8%).

Next, we investigated the potential biological functions of
the 185 genes with metastatic-cell-specific nsSNPs and the
2,449 genes with dCNAs associated with increased meta-
static capability. GO analysis showed that the top five

enriched biological processes included cellular process,
metabolic process, response to stimulus, localization, and
biological regulation (Fig. 1E). KEGG pathway analysis indi-
cated that these altered genes were involved with a large
spectrum of pathways that fell into seven categories, e.g.
metabolism, cellular community, signal transduction, and sig-
naling interaction (Fig. 1F). Some of these signaling pathways
were well-known for their critical roles in tumorigenesis and
cancer progression, such as the MAPK, Wnt, and ErbB sig-
naling pathways. Moreover, three of the enriched pathways
were involved with cell metabolism, including purine metab-
olism, biosynthesis of amino acids, and ether lipid metabo-
lism. The results suggested that the nucleotide and structure
variations in metabolic genes may contribute to the change of
metastatic potential.

FIG. 4. The mRNA levels of the 12 identified genes in the Huh7, MHCC97L, and HCCLM3 cells as detected by qRT-PCR.
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Gene Expression—To determine the gene expression
changes among the three cell lines, a hybridization-based
microarray analysis was performed to investigate the tran-
scriptome. In addition, quantitative mass spectrometry anal-
ysis by triplex stable isotopic dimethylation labeling was em-
ployed to study the proteome. WGCNA analysis was applied
to investigate the gene co-expression. Two significant mod-
ules were detected both in the data of transcriptome and
proteome, describing the up-regulated or the down-regulated
gene expressions along with the metastatic capability (Fig.
2A). Overall, 9,635 differentially expressed mRNAs were de-
tected by microarray (Fig. 2B, upper panel). For protein anal-
ysis, 338 proteins were observed to be up-regulated in the
HCC cell lines with increased metastatic capability, and 399
proteins were down-regulated (Fig. 2B, lower panel).

Overall, 179 genes were observed to be up-regulated in
metastatic cells at both mRNA and protein levels, and 132
genes were down-regulated (Fig. 2C). The overlapped genes
were searched for KEGG pathways, and the top 30 relevant
pathways with p � 0.05 were shown in Fig. 2D. Nineteen of
the 30 pathways were involved with cellular metabolism, e.g.
glycolysis, pentose phosphate pathway, biosynthesis of
amino acids. The transcriptomic and proteomic analyses
showed that the differentially expressed genes were signifi-
cantly associated with cellular metabolism, pointing to a po-
tential link between metabolism and metastasis. We also
mapped 43 metabolic genes with genomic and/or expression
changes from six major metabolism processes that were most
intensively studied in cancer research, i.e. glycolysis, pentose
phosphate metabolism, TCA cycle, glutamine metabolism,
nucleotide metabolism, and lipid metabolism (Supplemental
Fig. S4). Gene expression differences were observed for many
of these genes; however, genetic variations were rarely seen,
suggesting that the different expressions of these genes were
likely caused by epigenetic or transcriptional regulations.

Multiomics Integration—The genomic, transcriptomic, and
proteomic analyses have unveiled the genetic alterations and
differential gene expressions in metastatic HCC cells. To un-
derstand the outcome of the cellular metabolism changes, a
quantitative polar metabolomics profiling platform using se-
lected reaction monitoring with a 5500 QTRAP hybrid triple
quadrupole mass spectrometer was employed to analyze the
quantitative changes of 287 metabolites. WGCNA was ad-
opted to analyze the modules of the metabolites potentially
related with metastasis. The levels of 21 metabolites were
detected to be up-regulated along with the metastatic capa-
bility, and 32 metabolites were decreased (Fig. 3A). The me-
tabolites with different concentrations between the cells were
enriched in 19 metabolic pathways, such as TCA-cycle, gly-
colysis, purine and pyrimidine metabolism, and amino acid
metabolism (Supplemental Table S3). Next, we integrated the
data of transcriptome, proteome, and metabolome for KEGG
pathway analysis to identify the metabolic genes with varia-
tions at multiple levels. By integrating the KEGG pathway

analysis results of gene expression (Fig. 2D) and metabolo-
mics (Supplemental Table S3), genes from several pathways
were observed with variations at multiple levels (Fig. 3B).
qRT-PCR was used to examine the mRNA levels of the iden-
tified genes in the three studied cell lines, and the results
showed that ten genes were up-regulated in metastatic cells,
and two genes were down-regulated, consistent with the
microarray analysis results (Figs. 3B and 4). Furthermore, the
protein expressions of several identified genes were validated
by Western blotting, and the results were consistent with the
mass spectrometric measurements (Fig. 5). Among the 12
identified genes, GSTO1 was the only one accompanied by
CNA with the same trend as the expression change (Fig. 3B).
In addition, ALDH3A1, PYGB, and PGD were mutated in
single-nucleotide sites in the MHCC97L genome, and PYGB
also showed a SNP mutation in the HCCLM3 genome (Fig.
3B). Furthermore, the identified genes were from three differ-
ent metabolic pathways, including glycolysis, starch and su-
crose metabolism, and glutathione metabolism (Fig. 3B).
Taken together, the integrated multiomic analysis identified
multiple genes and metabolic pathways that are potentially
linked to HCC metastasis.

A Glycogen Regulator UGP2 Regulates HCC Cell Migration
and Metastasis—To compare the potential impacts of the 12

FIG. 5. Validation of protein expressions of selected genes in
the Huh7, MHCC97L, and HCCLM3 cells as detected by Western
blotting.
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FIG. 6. Overexpression of UGP2 promotes migration and invasion in HCC. (A) UGP2 expression was up-regulated in M1 (metastatic)
patients (n � 4) as compared with that in M0 (nonmetastatic) patients (n � 265), the data were analyzed by one-tailed Wilcoxon test, *p � 0.048.
(B) qRT-PCR analysis of UGP2 mRNA in seven HCC cell lines and a normal liver cell line LO2. (C) UGP2 overexpression enhanced the migration
abilities of both HepG2 and PLC cells in a wound-healing assay. Representative images at 0 h, 12 h, and 24 h are shown in the left panel. The
right panel shows the histogram plotting the means 	 S.E. (the standard error of the mean) of triplicate independent analyses (HepG2 cells:
p � 1.1 � 10�7 for 12h, p � 1.5 � 10�7 for 24h; PLC cells: p � 7.9 � 10�9 for 24h, p � 1.7 � 10�7 for 48h, by Student’s t test, ***p � 0.001).
(D) Migration assay using UGP2-overexpressing cells and the corresponding control cells. Representative images of the migrated cells are
shown in the left panel. Magnification: 200�. The right panels show the histogram plotting the means 	 S.E. of triplicate independent analyses
(HepG2 cells: p � 0.0087; PLC cells: p � 4.5 � 10�6, by Student’s t test, **p � 0.01, ***p � 0.001). (E) Matrigel invasion assay using
UGP2-overexpressing cells and the corresponding control cells. Representative images of the invaded cells are shown in the left panel.

Multiomic analysis of hepatocellular carcinoma cells

Molecular & Cellular Proteomics 17.4 615



identified genes on the metastatic capability, we calculated
the coefficients of determination (R2) between gene expres-
sion levels and the quantified metastatic capability (trait 1, see
“Methods”) for the 12 genes (Supplemental Fig. S5). UGP2, a
key enzyme regulating glycogen biosynthesis, was observed
to be positively correlated with the metastatic capability at
both of the mRNA (r � 0.954) and protein levels (r � 0.965)
with the highest coefficient of determination among these
genes. At the same time, the up-regulation of UGP2 in met-
astatic HCC tumor samples was also confirmed by comparing
the M1 and M0 liver cancer samples from the The Cancer
Genome Atlas records (Fig. 6A). UGP2 transfers a glucose
moiety from glucose-1-phosphate to MgUTP and forms UDP-
glucose and MgPPi (32). In liver and muscle tissue, UDP-
glucose is a direct precursor of glycogen. UGP2 also func-
tions as a critical regulator in the starch and sucrose
metabolism pathway. The multiomic analysis showed that
UGP2 was up-regulated in the metastatic cells, and three
related metabolites were also detected with different levels,
suggesting that UGP2 might play an important role in promot-
ing metastasis through the regulation of glycogen synthesis.

Despite the recent revival of interest in cancer metabolism,
very little is known about the role of glycogen synthesis. To
further explore the implication of this interesting observation,
we first examined the mRNA levels of UGP2 in seven different
HCC cell lines and a normal hepatic cell line LO2. The levels
of UGP2 were higher in the HCC cells as compared with the
LO2 cells, and its expression correlated with the migratory
potentials of the investigated cells (Fig. 6B). Next, we overex-
pressed UGP2 in HCC cells and investigated its impact on the
cell phenotype (Supplemental Fig. S6). In the PLC and HepG2
cells, the overexpression of UGP2 greatly increased cell mi-
gration in the wound-healing assay (Fig. 6C). In addition,
Transwell-chamber and Matrigel invasion assays showed that
UGP2 overexpression significantly enhanced cell migration
(Fig. 6d) and invasion (Fig. 6e). Consistent with these obser-
vations, enhanced migration and invasion was also observed
in the UGP2-overexpressing Huh7 cells (Supplemental Fig.
S7). The effect of UGP2 on cell proliferation was examined by
using colony formation and cell counting kit-8 (CCK8) assays,
and interestingly, cell proliferation was not affected by UGP2
in the PLC, HepG2, and Huh7 cells (Supplemental Fig. S8),
suggesting a specific role of UGP2 in the regulation of cell
migration and invasion. Furthermore, increased glycogenesis
was observed with UGP2 overexpression (Fig. 6F). The results
suggest that UGP2 may promote cell migration and invasion
through elevating glycogen production.

To determine the in vivo impact of UGP2 in the regulation of
HCC metastasis, we studied the effects of UGP2 in an ortho-
topic HCC mouse model. UGP2-overexpressing Huh7 cells
showed significant increase in the intrahepatic metastasis as
compared with the control cells (Fig. 6G). In addition, higher
levels of glycogen were detected in the tumors from mice
injected with UGP2-overexpressing cells as compared with
the mice injected with the corresponding control cells (Fig.
6H). Taken together, these results indicate that higher level of
glycogen could be beneficial for HCC tumor cells to survive
the nutrient-deprived condition during metastasis, and UGP2
may play an important role in cell migration and metastasis
through the regulation of glycogen synthesis in HCC.

DISCUSSION

The integrative multiomic analysis of three HCC cell lines
with different metastatic potentials revealed the link between
metabolism and metastasis. We mapped the gene expression
patterns of canonical metabolic pathways and also investi-
gated the downstream metabolites. Three metabolic path-
ways were detected to be altered at multiple levels, including
glycolysis, starch and sucrose metabolism, and glutathione
metabolism. Several enzymes from the glycolysis pathway
were up-regulated in the metastatic cells, such as PKM2,
glucose-6-phosphate isomerase (GPI), and PFKP. It has been
well-known that cancer cells utilize enhanced glycolysis to
produce building blocks for biosynthesis in order to sustain
cell proliferation (33). However, the role of glycolysis in me-
tastasis is controversial under different circumstances (34,
35). Our results suggest that the up-regulation of glycolysis
may be prometastasis in HCC cells, which is consistent with
the fact that many of these glycolysis enzymes are overex-
pressed in advanced HCC tissues and usually correlate with
poor prognosis (36). Furthermore, the overexpression of
PKM2 has been reported to enhance metastasis both in vitro
and in vivo (37). This study further confirmed the role of key
glycolysis enzymes in the regulation of HCC metastasis.

It has been long known that carbohydrate metabolism is
highly involved in tumorigenesis and cancer progression, and
most studies have focused on glucose and the subsequent
Warburg effect (6–8). On the other hand, it has been reported
that different carbohydrates may have distinct impacts on
cancer (34, 35, 38). A recent study demonstrated that sucrose
intake in mice could lead to increased tumor growth and
metastasis of breast cancer as compared with a nonsugar
starch diet (38). However, the underlying molecular mecha-
nism is still largely unclear. No prior studies have investigated

Magnification: 200�. The right panels show the histogram plotting the means 	 S.E. of triplicate independent analyses (HepG2 cells: p �
0.0093; PLC cells: p � 0.0004, by Student’s t test, **p � 0.01, ***p � 0.001). (F) The glycogen content was measured in UGP2-overexpressing
PLC cells and the corresponding control cells. Data represent means 	 S.E. of three independent experiments (*p � 0.044, by Student’s t test).
(G) Representative images showing the orthotopic transplanted tumor (marked with box) formed by UGP2-overexpressing HepG2 cells and the
corresponding control cells (n � 4, left panel). The numbers of surface tumor nodes were counted manually and plotted (***p � 4.9 � 10�5,
by Student’s t test). (H) The glycogen contents in the orthotopic transplanted tumors (n � 4, *p � 0.042, by Student’s t test).
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the involvement of the starch and sucrose metabolism in
HCC. In this study, we observed that three genes in the starch
and sucrose metabolism pathway were up-regulated in the
highly metastatic cell lines, including UGP2, GPI, and PYGB.
In addition, sucrose was decreased in the metastatic cell lines
even though all the three cell lines were cultured under the
same condition, possibly indicating an elevated sucrose me-
tabolism level in metastatic cells.

UGP2 is the hub molecule connecting starch and sucrose
metabolism with glycogen synthesis (32). UGP2 exchanges
UDP, from uridine triphosphate (UTP), at the carbon-1 posi-
tion of the glucose 1-phosphate, generating UDP-glucose
and releasing pyrophosphate, PPi. UDP-glucose is the acti-
vated glucose required for glycogen synthesis. A recent study
indicates that UGP2 is up-regulated in gallbladder cancer and
can be used as a biomarker for cancer progression and poor
prognosis (39). Hypoxia could induce the expression of UGP2
in a hypoxia inducible factor-dependent manner (40). Our
study suggested that overexpression of UGP2 resulted in
elevated glycogen level and enhanced cell migration in vitro
and increased intraheptic metastasis of HCC in vivo. The most
intuitive explanation is that UGP2 helps fill up the glycogen
reservoir that can be directly catalyzed to provide sufficient
energy for cell migration. Glycogen accumulation improves
survival of cancer cells in response to impoverishment of
nutrients in the microenvironment, especially during metasta-
sis. Taken together, these data pointed out the important role
of UGP2 and glycogen synthesis in the regulation of HCC
metastasis.

Furthermore, the integrative-omics analysis also revealed
the different status of glutathione metabolism among the in-
vestigated three cells. Glutathione is one of the major endog-
enous antioxidants that directly participate in the neutraliza-
tion of free radicals and reactive oxygen compounds, as well
as maintaining exogenous antioxidants such as vitamins C
and E in their reduced forms (41). Here, five genes, i.e. GCLC,
GCLM, PDG, GSTO1, and TXNDC12, from the glutathione
metabolism pathway were observed with different expression
levels in the metastatic cells. For example, glutamate-cysteine
ligase catalytic subunit GCLC and GCLM, two isoforms of
glutamyl cysteine synthetase, catalyzing the first and rate-
limiting step of glutathoine synthesis, are both up-regulated in
the metastatic cell lines. Overexpression of GCLC has been
reported to increase glutathione production and counteract
enhanced oxidative stress in human malignant mesothelioma
(42). Meanwhile, the inhibition of GCLM impairs tumor initia-
tion of breast cancer stem cells (43). In this study, we de-
tected higher concentrations of glutathione disulfide (GSSG)
and NADP
 by metabolomics (Fig. 4B). In addition, the levels
of intracellular ROS gradually increased in order of Huh7,
MHCC97L, and HCCLM3 (Supplemental Fig. S9), indicating
higher levels of oxidative stress in the metastatic cells. This
observation is consistent with the literature that oxidative
stress acts as a key driver of the malignant transformation

observed in primary tumors that enhances their metastatic
potential (44). Taken together, the results suggest that the
metastatic HCC cells elevate the glutathione metabolism to
protect themselves from the enhanced oxidative stress and to
sustain a highly metastatic phenotype.

In conclusion, this integrative multiomic study provides ev-
idences for the correlation between cellular metabolism and
metastasis. The comprehensive analysis defines the dysregu-
lations of metabolic genes at different levels that may impact
the metastatic traits of HCC cells. Based on the multiomic
analysis, a set of genes were revealed for their potential roles
in HCC metastasis through the regulation of metabolism.
Furthermore, this study provides an example of integrating
omic data from different levels for systematic description of
biological systems, paving the way toward omics-based clin-
ical management and personalized medicine.
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25. López-Ibáñez, J., Pazos, F., and Chagoyen, M. (2016) MBROLE 2.0-func-
tional enrichment of chemical compounds. Nucleic Acids Res. 44,
W201–W204

26. Yao, J., Liang, L., Huang, S., Ding, J., Tan, N., Zhao, Y., Yan, M., Ge, C.,
Zhang, Z., Chen, T., Wan, D., Yao, M., Li, J., Gu, J., and He, X. (2010)
MicroRNA-30d promotes tumor invasion and metastasis by targeting
Galphai2 in hepatocellular carcinoma. Hepatology 51, 846–856

27. Vizcaíno, J. A., Csordas, A., Del-Toro, N., Dianes, J. A., Griss, J., Lavidas,
I., Mayer, G., Perez-Riverol, Y., Reisinger, F., Ternent, T., Xu, Q. W.,
Wang, R., and Hermjakob, H. (2016) 2016 update of the PRIDE database
and related tools. Nucleic Acids Res. 44, 11033

28. Li, Y., Tang, Z. Y., Ye, S. L., Liu, Y. K., Chen, J., Xue, Q., Chen, J., Gao,
D. M., and Bao, W. H. (2001) Establishment of cell clones with different
metastatic potential from the metastatic hepatocellular carcinoma cell
line MHCC97. World J. Gastroenterol. 7, 630–636

29. Sun, F. X., Tang, Z. Y., Lui, K. D., Ye, S. L., Xue, Q., Gao, D. M., and Ma,
Z. C. (1996) Establishment of a metastatic model of human hepatocel-
lular carcinoma in nude mice via orthotopic implantation of histologically
intact tissues. Int. J. Cancer 66, 239–243

30. Huang, A., Zhao, X., Yang, X. R., Li, F. Q., Zhou, X. L., Wu, K., Zhang, X.,
Sun, Q. M., Cao, Y., Zhu, H. M., Wang, X. D., Yang, H. M., Wang, J.,
Tang, Z. Y., Hou, Y., Fan, J., and Zhou, J. (2017) Circumventing intratu-
moral heterogeneity to identify potential therapeutic targets in hepato-
cellular carcinoma. J. Hepatol. 67, 293–301

31. Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A.,
Bork, P., Kondrashov, A. S., and Sunyaev, S. R. (2010) A method and
server for predicting damaging missense mutations. Nat. Methods 7,
248–249

32. Roach, P. J., Depaoli-Roach, A. A., Hurley, T. D., and Tagliabracci, V. S.
(2012) Glycogen and its metabolism: Some new developments and old
themes. Biochem. J. 441, 763–787

33. Vander Heiden, M. G., Locasale, J. W., Swanson, K. D., Sharfi, H.,
Heffron, G. J., Amador-Noguez, D., Christofk, H. R., Wagner, G.,
Rabinowitz, J. D., Asara, J. M., and Cantley, L. C. (2010) Evidence for
an alternative glycolytic pathway in rapidly proliferating cells. Science
329, 1492–1499

34. Li, L., Zhang, Y., Qiao, J., Yang, J. J., and Liu, Z. R. (2014) Pyruvate kinase
M2 in blood circulation facilitates tumor growth by promoting angiogen-
esis. J. Biol. Chem. 289, 25812–25821

35. Torrano, V., Valcarcel-Jimenez, L., Cortazar, A. R., Liu, X., Urosevic, J.,
Castillo-Martin, M., Fernández-Ruiz, S., Morciano, G., Caro-Maldonado,
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